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We demonstrate that two-dimensional two-component bright solitons of an annular shape, carrying vortici-
ties sm, ±md in the components, may be stable in media with the cubic-quintic nonlinearity, including the
hidden-vorticitysHVd solitons of the typesm,−md, whose net vorticity is zero. Stability regions for the vortices
of both sm, ±md types are identified form=1, 2, and 3, by dint of the calculation of stability eigenvalues, and
in direct simulations. In addition to the well-known symmetry-breakingsexternald instability, which splits the
ring soliton into a set of fragments flying away in tangential directions, we report two new scenarios of the
development of weak instabilities specific to the HV solitons. One featurescharge flipping, with the two
components exchanging angular momentum and periodically reversing the sign of their spins. The composite
soliton does not directly split in this case; therefore, we identify such instability as anintrinsic one. Eventually,
the soliton splits, as weak radiation loss drives it across the border of the ordinary strongsexternald instability.
Another scenario proceeds through separation of the vortex cores in the two components, each individual core
moving toward the outer edge of the annular soliton. After expulsion of the cores, there remains a zero-vorticity
breather with persistent internal vibrations.
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I. INTRODUCTION

Optical vortex solitons are two- or three-dimensionals2D
or 3Dd dark or bright self-trapped light beams with an em-
bedded phase dislocation, which lends them an angular mo-
mentum s“spin”d. As topologically nontrivial self-trapped
states, the vortices have attracted a great deal of attention,
which was additionally enhanced by a potential which the
2D ones may have as reconfigurable conduits for weak opti-
cal signalsf1–3g. Vortex solitons of the bright type are of
special interest in both respects. In particular, being rela-
tively compact objects, they make it possible to realize so-
phisticated multivortex configurations. On the other hand,
experimental creation of bright solitons is hampered by the
fact that, in media with the simplest collapse-free nonlineari-
ties squadratic or saturabled, they are subject to strong azi-
muthal instability, which splits them into a set of ordinary
szero-spind solitonsf4,5g.

Nevertheless, as was first observed in direct simulations
of a model with the cubic-quinticsCQd nonlinearity in Ref.
f6g and later investigated in detail by more accurate methods
ssee a review in Ref.f3gd, bright vortices with topological
chargem=1 f6g, m=2 f3g, andmù3 f7g may be stable if the
model features competing self-focusing and self-defocusing
nonlinearities. Another example corroborating this conclu-
sion is a model combining quadratic and self-defocusing cu-
bic nonlinearitiesf8g.

It is relevant to mention that patterns of a similar type, in
the form of “optical necklaces”—i.e., ring-shaped chains of
the fundamental solitons—were introduced in the model with
Kerr scubicd nonlinearity f9g. The necklaces may also be

constructed with nonzero spin, including the case when it is
noninteger. However, the necklaces are not stationary ob-
jects, as they spread out and eventually disintegrate. A pos-
sibility to spracticallyd stabilize necklacelike patterns is to
introduce a vectorial interaction with a fundamental soliton,
which helps to support vortex-, dipole-, and multipole-mode
structures in another componentf10g. The stabilization by
vectorial interaction allows one to construct stationary
necklace-ring vector solitonsf11g with azimuthally modu-
latedsnecklace-typed components, whose densities sum up to
an azimuthally uniform distribution of the total intensity.
However, multipole and necklace-ring vector solitons are
subject to an azimuthal instability, except for the dipole-
mode vector solitonf12g and vortex-mode soliton close to a
bifurcation f13g. A particular class of suchsgenerally, un-
stabled solutions is a vector vortex soliton with equal ampli-
tude distributions in both componentsf14g.

On the contrary to the above-mentioned diverse unstable
configurations,stable two-component vortex solitons in the
CQ model have been identified in Refs.f15,16g. A challeng-
ing issue is the possibility of the existence of stable vectorial
solitons of thesm,−md type, which would feature the same
annular shapeswith a hole in the centerd as the bright scalar
or vectorial vortices with the spins, respectively,m or sm,md,
but with zero net spin. The possibility of the existence of
such objects is obvious if the coupling between the compo-
nents is of the cross-phase modulationsXPMd type—i.e., in-
sensitive to their relative phase—then, there is no difference
in the shape between stationary vortex solitons of thesm,md
and sm,−md types. However, in the simplest collapse-free

PHYSICAL REVIEW E 71, 026615s2005d

1539-3755/2005/71s2d/026615s9d/$23.00 ©2005 The American Physical Society026615-1



model with saturable nonlinearity, thesm, ±md vector vortex
solitons are unstable, although it was demonstrated that the
instability may be partly suppressed for thesm,−md vortices
f14,17g. A stabilizing effect of the incoherent interaction of
counterrotating vortices was also demonstrated in an aniso-
tropic photorefractive self-defocusing mediumf18g.

Compound vortices with the spin componentss1,−1,0d
ands1, 1, 2d were also studied in the three-wave model of the
type-II second-harmonic generation, with two components of
the fundamental wave and one second-harmonic component
f19,20g. It was shown that, in this modelper se, vortices of
both types are unstable—against fusion into an ordinary
zero-spin soliton or splitting, respectively. The addition of a
stabilizing repulsive cubic interaction makes the life expect-
ancy of the vortices much longer, but no case of complete
stabilization has been foundf20g.

In this work, we demonstrate that, in contrast with the
previously studied models, thesm,−md vortex solitons are
rigorously stablein a certain parameter region in the CQ
model. In fact, this result opens up a new class of stable 2D
solitons withhidden vorticitysHVd.

We start with a two-component CQ model in a general
rescaled form, which describes spatial evolution of the light
beams along the propagation coordinatez in a bulk medium
f21g,

i]zE1,2+ DE1,2+ suE1,2u2 + auE2,1u2dE1,2− gsuE1,2u4

+ 2buE1u2uE2u2 + buE2,1u4dE1,2= 0, s1d

whereE1,2sx,y,zd are the local slowly varying amplitudes of
the two waves and the LaplacianD is the diffraction operator
acting on the transverse coordinatessx,yd. The real param-
etersa and b are the cubic and quintic XPM coefficients,
respectively. The quintic coefficientg of the self-phase-
modulationsSPMd may be normalized to be 1ssee, e.g., Ref.
f22gd, which we assume below.

The CQ nonlinearity was experimentally observed in iso-
tropic media, such as glassesf23g and some organic materi-
als f24g. These media also feature nonlinear loss, but the
consideration of the conservative model is justified, as the
characteristic soliton’s length can be made essentially
smaller than the absorption length, or the loss may be com-
pensated by gain. In that case,E1 andE2 may be realized as
orthogonally polarized waves, witha=2/3 for linear anda
=2 for circular polarizations. The latter case pertains as well
to a set of two waves with different carrier wavelengths.
Besides that, the models1d may serve as a rough isotropic
approximation for the description of photorefractive media in
the low-saturation regime, which is characterized by equal
strengths of the XPM and SPM nonlinearities,a=b=1 f2g.
Thus, different values ofa and b are physically relevant.
The estimation of the typical parameters, includingthe trans-
verse size and minimal energy for the generation of vortex
solitons, has been recently presented in Ref.f16g.

II. STATIONARY SOLUTIONS AND STABILITY ANALYSIS

In this work we focus on the vectorial vortex solitons of
the sm, ±md types with symmetric components:

SE1

E2
D = VsrdexpsikzdSexpsimwd

exps± imwd
D , s2d

wherer andw are the polar coordinates in the planesx,yd, k
is a wave number, and the real functionV obeys the equation

kV= D̂mV + s1 + adV3 − s1 + 3bdV5, s3d

where D̂m;d2/dr2+r−1d/dr−m2r−2. Using the transforma-
tion V=Rs1+ad1/2s1+3bd−1/2, r → rs1+ad−1s1+3bd1/2, and
k→ks1+ad−2s1+3bd, we cast Eq.s3d in the form

kR= D̂mR+ R3 − R5, s4d

which is supplemented by the boundary conditionR, r umu at
r →0. For r →`, there are two types of solutions to Eq.s4d,
coexisting in the medium with competing nonlinearities
f25g—viz., bright solitons withR,exps−Îkrd /Îr and dark
solitons withR2sr =`d=s1+Î1−4kd /2. Integral characteris-
tics of the bright vectorial soliton are represented by its par-
tial powers in both components:

P1,2 ;
2p

1 + a
E

0

`

rdrR2srd. s5d

Global characteristics of the soliton families, in the form
of dependencesksPd, where the total power isP; P1+P2,
are displayed in Fig. 1sad for a=b=1. The cutoff slargest
possibled value ofk for the bright-soliton family is the same
as for the family of commonly known 1D solitons in the CQ
model, which isksP=`d=3/16;0.1875; at this value ofk,
the bright solitons become infinitely broadsapproaching a
finite maximum amplitude,Rmax=Î3/2d—i.e., they go over
into dark solitons. We note that the Vakhitov-Kolokolov cri-
terion dk/dP.0, which is a necessary condition for the sta-
bility of the solitonsf26g, is satisfied for all these solutions.
Actually, it guarantees stability against radial perturbations,
but not against symmetry-breaking ones, which are known to
be the source of instability of vortex solitonsf3g.

Note that the partial angular momenta of the two compo-
nents are not conserved independently, the integral of motion
being only thetotal angular momentumM =M1szd+M2szd,
where the partial momenta are defined as

FIG. 1. The wave numberk sad and Hamiltoniansbd, calculated
as per Eq.s8d, versus total powerP=P1+P2 for the vectorial vortex
solitons of thesm, ±md types.
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M1,2=E ImSE1,2
* ]E1,2

]w
Ddr s6d

srecall w is the angular coordinated. Two distinct values of
the total angular momentum,M =2mPandM =0, correspond
to two types of solutions,sm,md and sm,−md. Obviously,
both solitons coincide in shape; therefore, the diagrams for
them shown in Fig. 1 are identical. At the same time, the
stability of the two types of the solutions may be completely
different. An attempt to describe such a difference, based on
the “thin-ring” approximation, was made in a saturable
model f14g. Recent results on the calculation of a maximal
growth rate of instability in the same modelf17g demon-
strated the difference of two types of solutions and partial
suppression of instability for counterrotating vorticessm,
−md; however, no stable solitons were found in that case.

A detailed consideration demonstrates that basic stability
properties of the vectorial solitons are adequately represented
by the case ofa=b=1, on which we focus below. In this
case, the Hamiltonian of Eq.s1d is

H =E Su ¹ E1u2 + u ¹ E2u2 −
1

2
I2 +

1

3
I3Ddr , s7d

with the total intensityI = uE1u2+ uE2u2. The transformation of
variables which leads to the normalized equations4d
amounts toVsrd;Rsrd /Î2, so thatI =R2. With the latter sub-
stitution, Eq.s7d reduces to the Hamiltonian of a scalar vor-
tex soliton with chargem:

H = 2pE
0

` FSdR

dr
D2

+
m2

r2 R2 −
1

2
R4 +

1

3
R6Grdr . s8d

Perturbed vortex-soliton solutions are sought for in the
form fcf. Eq. s2d for the unperturbed onesg

E1 = expsikz+ imwdfRsrd/Î2 + f̃ + g̃*g,

E2 = expsikz± imwdfRsrd/Î2 + p̃ + q̃*g, s9d

whereh f̃ ,g̃, p̃,q̃j;hfsrd ,gsrd ,psrd ,qsrdjexpslsz+ iswd with a
complex eigenvaluels and an arbitrary integer azimuthal
index s. Substitution of these expressions into the linearized
equations1d yields a system

ils1
f

g

p

q
2 = 3

L̂+ A A A

− A − L̂− − A − A

A A L̂± A

− A − A − A − L̂7
41 f

g

p

q
2 , s10d

where L̂± ; D̂m±s−k+R2s3/2−2R2d and A;R2s1/2−R2d.
The 6 signs in Eq. s10d correspond to the two states
sm, ±md.

Note that in the case of thesm,md solutions, the matrix in
Eqs. s10d has a blockf232g structure; hence, the eigen-
modes degeneratesf =p and g=qd and the linear stability
problem reduces to one for the scalar vortex solitonscf. Refs.
f3,7gd. Therefore, the stability properties of the
sm,md-symmetric vectorial vortices arecompletely identical

to those of their scalar counterparts. However, degeneracy
does not take place for the HV solitons of thesm,−md type,
which clearly shows the difference in the stability problem
for the two types of vectorial vortex solitons.

Stability eigenvalues were found from numerical solution
of Eqs. s10d. In Fig. 2, we display the dependences of the
eigenvalues with different values of the azimuthal indexs on
the wave numberk for vectorial vortex solitons of thes1, 1d
ands1,−1d types. The maximum growth rate is found for the
modes with, respectively,s=2 ands=3.

The above results comply with the direct simulations of
the evolution of the vortices shown in Fig. 3 fork=0.1, when
the linear stability analysis predicts that the solitons of both
types are unstable. The symmetry-breaking instability modes
of the s1, 1d soliton in both components are identical; there-
fore, in the Fig. 3sad we display only one of them. The ob-
served dynamics of two splintersswhich are zero-vorticity
vector solitonsd, generated from this solution, is exactly the
same as was observed for the scalar vortex soliton: the splin-
ters fly away in tangential directionsf4,7g.

FIG. 2. Growth rates of perturbation eigenmodes with different
values of the azimuthal indexs sindicated next to the curvesd for the
vectorial vortex solitons of the typess1, ±1d.

FIG. 3. The instability-induced evolution of the vectorial vortex
solitons with k=0.1. sad One of two identical components of the
s+1, +1d soliton. sbd Two components of thes+1,−1d soliton with
implicit vorticity.
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A totally different scenario is observed in Fig. 3sbd,
where, in each component, three splinters of the initial HV
soliton start to move in radial directionsscf. similar observa-
tions in Refs.f11,27gd. At this stage of the HV soliton’s
breakup, as is seen in the panel corresponding toz=180 in
Fig. 3sbd, the triangular sets of splinters in the two compo-
nents are slightly misaligned. With further propagation, the
separation of the splinters ceases and they eventuallyfuse
into a spinlesss0, 0d vectorial soliton.

Figure 4 displays the instability growth rates found from
Eq. s10d for higher-order vortex solitons, of thesm, ±md
types, withm=2 and 3. As seen in these figures, each type of
the soliton has its stability area, as summarized in Table I.
From these results, we conclude that, for all the solitons with
explicit vorticity fthe sm,md typeg, the stability regions ex-
tend up to the cutoff valuek=0.1875, which implies that
these solitons continuously carry over into stable vortices of
the dark-soliton type, similar to what is known in the scalar
case. On the contrary, for the HV solitonsfthesm,−md typeg,
the stability intervalnever reachesthe cutoff value; i.e., dark
vortices of the same type arealways unstable.In fact, stabil-
ity intervals for vortex solitons terminating atk smaller than
the cutoff values“stability islands”d have never been re-
ported before. In the case of the higher-order solitonsswith
m=2 and 3d, thesm,−md HV solitons have a smaller stability
domain than theirsm,md counterparts. It is noteworthy too

that the azimuthal indexs of the most unstable eigenmode
depends on the type of the soliton, and for the higher-order
ones of the typess2, ±2d and s3, ±3d, the most dangerous
value ofs depends onk as well.

III. CHARGE FLIPPING

Performing a numerical analysis of the linear-stability
problem based on Eq.s10d with higher accuracy, we have
found additional very small unstable eigenvalues for even
azimuthal indicesss=2md, with the growth rate.5310−4,
which were not visible in Figs. 2 and 4. In Fig. 5 we plot
corresponding ordinary bifurcations of the pitchfork type. In
order to check the numerical accuracy we applied two differ-
ent discretization meshes and found that the numerical val-
ues of these minuscule eigenvalues coincide within the first
two significant digits when passing from a grid with 300
points to a grid with 600 points. As a result of these addi-
tional very weak perturbations, the corresponding rigorously
defined stability regions for thesm,−md HV solitons are con-
siderably reduced with respect to theirsm,md counterparts
ssee Table I for a summary of the output of the stability
calculationsd.

To visualize the development of the weak instability re-
vealed by Fig. 5, we simulated the propagation of the soli-
tons of both typess1, ±1d with k=0.14, adding random noise
with a relative amplitude of 10%. For the solitons with the
explicit vorticity, the instability growth rate is Rel=0.0373,
and the dynamics follows the “usual” break-up scenario
shown in Fig. 3sad; therefore, we do not display it again. The
growth rate of the same instability mode withs=2 but for the
HV soliton of the s1,−1d type is two orders of magnitude
smaller, Rel<0.000 36; therefore, noticeable development
of the instability should be expected after having passed the
distance,104. Although the so large propagation distances
can hardly be achieved experimentallysin the experiment,
these solitons will seem as completely stable onesd, the issue
is of principal interest; therefore, we have completed the nu-
merical analysis and found the soliton’s dynamics of a novel
kind. The results are summarized in Fig. 6, where we show
the intensity and phase distributions for both components up
to z=175 000.

To explain the complex internal dynamics observed in
Fig. 6, first we recall the theory developed for necklace-ring
vector solitons in Ref.f11g. The HV solutions that we con-
sider here may be regarded as constituting a special type of

FIG. 4. The same as in Fig. 2 for vectorial vortex solitons of the
typessm, ±md for m=2,3.

TABLE I. Stability intervals and their size relative to the overall
existence interval 0,k,3/16;0.1875 for the vectorial vortex
solitons of sundry types.

sm,nd Unstable Stable %%

s1,1d 0,k,0.14855 0.14855,k,0.18750 20.8%

s2,2d 0,k,0.16190 0.16190,k,0.18750 13.7%

s3,3d 0,k,0.17005 0.17005,k,0.18750 9.3%

s1,−1d 0,k,0.13582 0.16163,k,0.17945 9.5%

s2,−2d 0,k,0.14884 0.15620,k,0.15940 1.7%

s3,−3d 0,k,0.15866 0.15866,k,0.15973 0.57%

FIG. 5. Realssolid linesd and imaginarysdashed linesd parts of
the instability eigenvalues of the small “internal” instability eigen-
modes for the hidden-vorticity solitons of the typesm,−md with
m=1, 2, and 3, the corresponding azimuthal indices beings=2m.
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the necklace-ring vectorial solitons, with equal powers in
both components,P1,2=P/2. In the most general case, these
solutions may be represented asfcf. Eq. s2dg

SE1

E2
D = RsrdeikzQCFScossmwd

sinsmwd
D . s11d

Here the matrix

Q = Feiu1 0

0 eiu2
G , s12d

with arbitrary constantsu1,2, indicates the phase invariance
of the solutions; this symmetry property is amenable for the
conservation of the partial powersP1,2. The matrixF is sim-
ply a rotational transformation in the transverse plane,

F = F cossmw0d sinsmw0d
− sinsmw0d cossmw0d G , s13d

where the arbitrary constant anglew0 reflects the rotational
invariance responsible for the conservation of the total angu-
lar momentum. Note that, for radially symmetric solutions of
Eq. s2d, the transformationw→w0, described by Eq.s13d, is
equivalent to the phase shift accounted for by Eq.s12d with
u1,2= 7mw0.

The arbitrary phase shift being already absorbed by the
matrix Q, the linear transformationC in Eq. s11d is given by

C = Fcosc i sinc

sinc ± i cosc
G , s14d

where the constant parameterc describes the rotation in the
space of the componentssE1,E2d, similar to the Manakov
system, and corresponds to conservation of the “isotopic
spin,” i ehE1E2

* −E1
*E2jdr . For any value ofc, the latter ex-

pression is zero in our case. In addition, the parameterc
uniquely defines the initial values of the partial spinsSn
=Mn/Pn frecall the partial angular momenta were defined in
Eq. s6dg,

S1 = msins2cd, S2 = ± S1, s15d

and, therefore, it determines the total spinsdynamical invari-
antd S;M /P= 1

2sS1+S2d= 1
2sm±mdsins2cd.

Among possible stationary solutions conforming to Eq.
s11d are those with zero, fractionals0,S,md, and integer
total spinsS=md. We focus here on two cases which corre-
spond to Eq.s2d: the sm,md type of the solutions, with the
total angular momentum attaining its maximum possible
value, M =mP si.e., S=md, and the HV solutions ofsm,
−md type, with M =S=0. Both of them represent radially
symmetric vector vortices withucu=p /4; the transformations
c→−c, m→−m, and sm, ±md→ s−m, 7md are all equiva-
lent.

Solutions with explicit vorticityS=m correspond to the
upper sign in Eq.s14d. The partial spins assume the maxi-
mum possible values in this case,S1,2=m; thus, the only
corresponding configuration is the one withucu;p /4, and
the vortex soliton of this type always has axially symmetric
sring-shapedd components. In addition, the exchange of an-
gular momentum between components is forbidden in this
case.

The HV solutions withS=0 are drastically different. They
correspond to the lower sign in Eq.s14d for an arbitrary
value of c. These include the HV vectorial vortices forc
= ±p /4 and also solutions with intensity distributions in the
two components in the form of twocrossed multipoles, for
c=0 andS1,2=0. A similar solution withm=1, or a dipole-
dipole vectorial soliton, was investigated theoretically and
experimentally in Refs.f11,27g and found to be azimuthally
unstable in a saturable medium. Thec values from the inter-
val −p /4,c,p /4 determine thedepth of the azimuthal
modulationin each of the two components, which sum up to

FIG. 6. Evolution of the “internally unstable” vortex soliton
with the hidden vorticity, of thes1,−1d type, for k=0.14. The
propagation distance isz=0 sad, 60 000 sbd, 120 000 scd, and
175 000sdd. The dynamical exchange of the spinsS1,2 fsolid lines
in sedg is accompanied bycharge flippingssign reversal of the vor-
ticity in each componentd, as is clearly visible in the phase diagrams
for argsE1,2d in sad–sdd. The total spinSkeeps its zero valuefsee the
dashed line insedg. The net intensityuE1u2+ uE2u2 keeps its azimuthal
homogeneity in the course of the entire propagation, as shown insfd
for z=175 000. Vertical dotted lines correspond to snapshotssbd and
scd.
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the azimuthally uniform distribution of the total intensityI
=R2 f11g. Thus, the continuous soliton family includes
crossed multipoles with different values of the azimuthal
modulation depth and opposite fractional values of the par-
tial spins. It is important to note that, because all the dynami-
cal invariants do not depend onc, for the whole branch of
HV vectorial solitons parametrized byc, dynamical ex-
change of angular momentum between components is pos-
sible.

Using the decomposition in Eq.s11d, we can now explain
the dynamics in Fig. 6 in terms of a slow evolution of the
parametersw0 and c, as shown in Fig. 7. In other words,
instead of modulational instability along the azimuthal direc-
tion, which would lead to fragmentation of the initial annular
soliton, the instability modes from Fig. 5 initiate slow sliding
of the solution across the continuous manifold with the inde-
pendent parametersw0 andc. At each stage of the evolution,
such as those corresponding to framessad–sdd in Fig. 6, we
observe a slightly perturbed stationary solution with varying
w0 and c sthe arbitrary phasesu1,2 are of no importance
because the XPM interaction between the components is
phase insensitived.

Indeed, the random noise at the level of 10% of the soli-
ton’s amplitude, added to the HV soliton in Fig. 6sad, quickly
dissipates, and in the course of the first several thousands
units, the vector HV soliton propagates without any notice-
able change. Then, as is seen in Fig. 7sad, the parameterc
decreases and the components assume a shape of two crossed
dipoles. When the modulation depth reaches its maximum
for c=0, the solution is, simply,hE1,E2j=Rsrdhcossw
−w0d ,sinsw−w0dj; hence, at this point,neither component

contains any vorticity, as is indeed seen in Fig. 6sbd. Because
the parameterw0 is arbitrary, its particular value at this stage
fFig. 7sbdg depends on the initial noise.

With further propagation, the componentsE1,2 almost re-
store their initial annular shapes and develop phase disloca-
tions corresponding to new vortex cores, which areopposite
to initial onesfcf. Figs. 6sad and 6scdg. This phenomenon,
“charge flipping,” was recently predicted to occur in a sig-
nificantly different system: namely, vortices in nonlinear
photonic latticesf28g. The latter system does not conserve
the angular momentum at all, because the rotational symme-
try is broken by the lattice. Nevertheless, the similarity with
that system, which seems to be important for the effect to
occur, is the presence of two interacting subsystems which
are given the freedom to exchange the angular momentum:
the vortex and the lattice in Ref.f28g and the two compo-
nents of the vortex soliton in the present case. It is com-
monly known from the studies of vortices in linear optics
f29g that vortices in the phase fronts can annihilate or be
born in pairs. The charge-flipping phenomenon introduces a
new mechanism of such transformation in the nonlinear set-
ting, through the exchange of the angular momentum be-
tween two nonlinearly coupled subsystems.

After the first charge flip, the components do not fully
restore their annular shapefFig. 6scdg, and the maximum
value of the partial spins which have the opposite signs,S2
=−S1<0.83 withc<−0.462, is attained atz<117 300fFig.
7sadg. At the same time, the dipoles in both components start
to rotate slowlyfthe anglew0 increases; see Fig. 7sbdg. We
can introduce, therefore, theangular velocityof the rotation,
dw0/dz, as shown in Fig. 7scd. However small, it demon-
strates an important feature of the correlation between the
internal “degrees of freedom”c andw0. Indeed, for the exact
stationary solutions, these two parameters are independent,
while for the perturbed solutions in Figs. 6 and 7, they be-
come coupled through the growing instability modes. In par-
ticular, points where the angular velocity vanishes corre-
spond to a dipole-dipole soliton with zero vorticity in both
components, while the fastest rotation is achieved when the
partial spins in the components attain maximum absolute
values.

We continued the simulations and eventually observed a
breakup of the vortex soliton, as shown in Fig. 8. It occurs
within the distance of several hundreds of propagation
units—i.e., three orders of magnitude smaller than the previ-
ous stable propagation; thus, it may be regarded as an “ex-
plosion.” We have checked the evolution of the integrals of
motions at this stage and, in particular, observed perfect con-
servation of the total spin, Fig. 8sdd, which rules out a nu-
merical error as a probable cause of the “explosion.”

In Fig. 9 we show the total integral power and Hamil-
tonian, calculated in the course of the propagation, and no-
tice small changes which naturally occur due to the radiation
emission from the perturbed soliton. The breakup of the soli-
ton is accompanied by a strong emission of radiation which
leads to sharp changes in the final segment of the diagrams.
Using the relations displayed in Fig. 1, we restore the corre-
sponding value of the propagation constantk and plot it in
Fig. 9scd. As one can see, the propagation constant decreases,
parallel to the power loss due to the radiation. The explosion

FIG. 7. Evolution of the parametersc from Eq. s14d in sad and
w0 from Eq. s13d in sbd, corresponding to the adiabatic “sliding”
across the soliton family, defined by Eq.s11d in the course of the
evolution displayed in Fig. 6. Inscd, the angular velocity of the
internal rotation is shown; strong numerical noise on this curve
reflects the uncertainty of the value of the parameterw0 which is
arbitrary for the unperturbed stationary solutions. Vertical dashed
lines indicate the charge-flippingsspin-reversald points, close to
those shown in Figs. 6sbd and 6sdd.
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occurs when the propagation constant reaches the valuek
<0.136 27, and the splitting in Fig. 8 follows the scenario
already observed in Fig. 3—three splinters fly away along
radial directions. We conclude that the sudden splitting of the
otherwise “intrinsically” unstable HV soliton happens be-

cause it hits a boundary of the “external” instability domain,
after which it breaks apart. The latter boundary is found from
the linear-stability analysis to be atk=0.135 82ssee Table Id,
and we stress the remarkable agreement and accuracy of the
numerical procedure: both values coincide up to 10−3—i.e.,
k<0.136.

Closer to the linear-stability domain—for instance, fork
=0.16—the HV soliton of the types1,−1d demonstrates no
sign of instability for any reasonable propagation distance
despite the addition of initial noise, because the correspond-
ing instability mode withs=2 in Fig. 3 has a vanishingly
small growth rate. We mark the vanishing “internal” instabil-
ity by excluding the corresponding domain from the final
summary in Table I.

We conjecture that the internal dynamics of the vectorial
soliton and charge flipping reported above for the particular
CQ model and the particular case ofm=1 may manifest
itself for higher topological charges as well as in other
systems—for example, in the mixture of Bose-Einstein con-
densatessBEC’sd f30g. In the latter system, the overall stabi-
lization of vortices is provided by the external trap, rather
than the quintic nonlinearity. The necklace-ring-type solu-
tions in two-component BEC’s, or nontopological vortices,
were recently described in Ref.f31g. It is interesting to note
that the internal dynamics of vector vortices, which keeps the
overall density profile intact similar to Fig. 6, can be initiated
in a BEC mixture by the adiabatic or abrupt changes of the
external coupling drive; however, no charge-flipping effect
was observed in Ref.f31g.

IV. INSTABILITY OF THE VORTEX CORE CLOSE TO
CUTOFF

As was already stressed, Figs. 2 and 4 emonstrate that, in
contrast to the stability domain for the solitons of thesm,md
type, the stability region for the HV solitons of thesm,−md
type does not extend to the cutoff point. In this section, we
aim to study the instability of the HV solitons close to this
point. The simulations demonstrate that the corresponding
instability mode with the azimuthal indexs=1 leads to a
shift of the vortex core. A possibility of this specific instabil-
ity was earlier studied in Ref.f32g for vortices in scalar
models, using an analytical approximation for very broad
annular solitons. It was concluded that such an instability
may occur, but no particular linear-instability mode corre-
sponding to the core shift was foundfas before, the scalar
case is exactly tantamount to the symmetric vectorial vorti-
ces ofsm,md type considered hereg. In contrast to that, Fig.
10 shows an explicit example of such an instability mode for
the HV solitons of thes1,−1d type.

Numerical development of this instability is displayed for
k=0.18 in Fig. 11. Adding initial random noise with a 20%
relative amplitudefFig. 11sadg does not strongly affect the
dynamics—for up to 4000 propagation units, it shows no
sign of instability. The only visible action of the perturbation
is excitation of internal modes of the vectorial soliton, cor-
responding to purely imaginary eigenvalues in the linear-
perturbation spectrumfsuch eigenvalues are shown in Fig.
10sadg. The pattern displayed in Fig. 11sbd periodically re-

FIG. 8. The final stage of the soliton’s evolution, featuring the
“explosion,” after the quasistable evolution in Fig. 6. The propaga-
tion distance isz=179 500 insad, 179 600 insbd, and 179 700 inscd.

FIG. 9. Evolution of the total integral powersad, Hamiltonian
sbd, and accordingly defined propagation constantscd in the course
of the propagation shown in Figs. 6 and 8.
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peats itself during the propagation. Similar long-lived inter-
nal modes have been recently observed in perturbed evolu-
tion of scalar CQ vortex solitonsf33g. It is noteworthy too
that, for the symmetric vectorial vortex soliton shown in Fig.
11, the total intensity shows no sign of a growing azimuthal
modulation, as the intensity of the components sum up to the
axially uniform distribution, similar to the case of “intrinsic”
instability shown in Fig. 6.

At the distance ofz=4300, the growth of the unstable
mode results in separation of the dislocations in the two
componentsfsee Fig. 11scdg. The distribution of the total
intensity remains unmodulated, and the vortex core is invis-
ible, because it is covered, in the total-intensity distribution,
by the mutual displacement of the components: actually, an
intensity maximum in one component lies on top of a mini-
mum in the other. The shift of the vortex core quickly in-
creases, and it moves to the outer edge of the soliton. As a
whole, the vectorial soliton remains localized, as is seen in
Fig. 11sdd, and it possesses no vorticity, as the spin diagrams
in Fig. 11sed demonstrate. Strong modulation of the compo-
nents inside the soliton persists for a long propagation dis-
tance after the vortex annihilation. We conclude that, in this
case, the result of the development of the instability mode is
establishment of a breather—i.e., a strongly perturbed and
oscillating zero-spin soliton.

V. CONCLUSION

We have demonstrated that 2D spatial solitons of annular
shape carrying zero total vorticity may be stable in the CQ
medium, being supported by the hiddensimplicitd vorticity,
in quite a broad region. The output of the linear-stability
analysis is summarized in Table I, where the stability domain
and its size relative to the existence domain are shown. There
is a single border between instability and stability regions for
the explicit-vorticity solitons of thesm,md type and the sta-
bility domain extends up to the point of the transition to

dark-soliton vorticesscutoffd. For the implicit-vorticity solu-
tions of thesm,−md type, the situation is more complex. We
identify the region of the relatively strong “external” insta-
bility sshown in Table Id, where unstable vectorial solitons
with both implicit and explicit vorticity split into a set of
fragments, the number of which is equal to the azimuthal
index of the fastest growing mode of small perturbations. For
larger k and only for the hidden-vorticity solitons of the
sm,−md type, there exists a domain of very weak “intrinsic”
instability, where the vectorial soliton as a whole remains
robust, while its components undergo a very slow internal
evolution, “sliding” through the solution family and exhibit-
ing exchange of the angular momentum and charge flipping.
In a vicinity of the cutoff, where the explicit vortices are
stable, the hidden-vorticity solitons reveal a weak-instability

FIG. 10. sad Realssolid linesd and imaginarysdashed linesd parts
of the instability eigenvalues with the maximum growth rate for the
vectorial solitons of thes1, ±1d types.sbd An additional bifurcation
smagnified in the inset Ad of the perturbation mode withs=1, which
occurs for the hidden-vorticity soliton of thes+1,−1d type close to
the cutoff.

FIG. 11. Dynamics of the hidden-vorticity soliton of thes1,
−1d type with k=0.18 and initial 20% random-noise perturbation.
The propagation distance isz=0 in sad, 500 in sbd, 4300 inscd, and
5000 insdd. In this figure, in contrast to previous ones, the intensity
is scaled from blackszerod to white smaximumd. As before, the
frame sed demonstrates the evolution of the partial spinsssolid
linesd in the two components and conservation of the total angular
momentumsthe dashed lined.
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mode that results in splitting of the phase dislocations in the
two components, somewhat similar to the splitting of
multiple-charged dark vortex solitons in the scalar model.
Therefore, the stable solitons with hidden vorticity may be
regarded as “exceptionally bright” objects, unlike the famil-
iar solitons carrying explicit vorticity, which always have
stable dark-vortex counterparts. With the increase of the in-
teger vorticitym, the stability regions of the vectorial soli-
tons with both explicit and implicit vorticity quickly shrink.

ACKNOWLEDGMENTS

A.S.D. gratefully acknowledges support from the Alex-
ander von Humboldt Foundation. The work of B.A.M. was
supported, in a part, by the Israel Science Foundation
through Grant No. 8006/03. This author appreciate hospital-
ity of the Nonlinear Physics Centre at the Research School of
Physical Sciences and Engineering, Australian National Uni-
versity. D.M. and D.M. acknowledge support from Deutsche
ForschungsgemeinschaftsDFGd, Bonn.

f1g Yu. S. Kivshar and G. P. Agrawal,Optical Solitons: From
Fibers to Photonic CrystalssAcademic Press, San Diego,
2003d.

f2g For an overview of the field seeSolitons, edited by M. Segev-
fOpt. Photonics News13, 27 s2002dg.

f3g L.-C. Crasovan, B. A. Malomed, and D. Mihalache, Pramana,
J. Phys.57, 1041s2001d.

f4g W. J. Firth and D. V. Skryabin, Phys. Rev. Lett.79, 2450
s1997d; D. V. Skryabin and W. J. Firth, Phys. Rev. E58, 3916
s1998d.

f5g L. Torner and D. V. Petrov, Electron. Lett.33, 608 s1997d; D.
V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J. P. Torres, and
C. Cojocaru, Opt. Lett.23, 1444s1998d.

f6g M. Quiroga-Teixeiro and H. Michinel, J. Opt. Soc. Am. B14,
2004 s1997d.

f7g R. L. Pego and H. A. Warchall, J. Nonlinear Sci.12, 347
s2002d.

f8g I. Towers, A. V. Buryak, R. A. Sammut, and B. A. Malomed,
Phys. Rev. E63, 055601sRd s2001d; D. Mihalache, D. Mazilu,
B. A. Malomed, and F. Lederer,ibid. 69, 066614s2004d.

f9g M. Soljaćić, S. Sears, and M. Segev, Phys. Rev. Lett.81, 4851
s1998d; M. Soljaćić and M. Segev, Phys. Rev. E62, 2810
s2000d; Phys. Rev. Lett.86, 420 s2001d.

f10g A. S. Desyatnikov, D. Neshev, E. A. Ostrovskaya, Yu. S.
Kivshar, G. McCarthy, W. Krolikowski, and B. Luther-Davies,
Opt. Lett. 26, 435s2001d; J. Opt. Soc. Am. B19, 586s2002d.

f11g A. S. Desyatnikov and Yu. S. Kivshar, Phys. Rev. Lett.87,
033901s2001d.

f12g J. J. Garcia-Ripoll, V. M. Perez-Garcia, E. A. Ostrovskaya, and
Yu. S. Kivshar, Phys. Rev. Lett.85, 82 s2000d; W. Kro-
likowski, E. A. Ostrovskaya, C. Weilnau, M. Geisser, G. Mc-
Carthy, Yu. S. Kivshar, C. Denz, and B. Luther-Davies,ibid.
85, 1424s2000d; T. Carmon, C. Anastassiou, S. Lan, D. Kip,
Z. H. Musslimani, and M. Segev, Opt. Lett.25, 1113
s2000d.

f13g J. Yang and D. E. Pelinovsky, Phys. Rev. E67, 016608
s2003d.

f14g M. S. Bigelow, Q.-H. Park, and R. W. Boyd, Phys. Rev. E66,
046631s2002d.

f15g D. Mihalache, D. Mazilu, I. Towers, B. A. Malomed, and F.

Lederer, Phys. Rev. E67, 056608 s2003d; J. Opt. A, Pure
Appl. Opt. 4, 615 s2002d.

f16g D. Mihalache, D. Mazilu, B. A. Malomed, and F. Lederer, J.
Opt. B: Quantum Semiclassical Opt.6, S341s2004d.

f17g F. Ye, J. Wang, L. Dong, and Y. P. Li, Opt. Commun.230, 219
s2004d.

f18g A. V. Mamaev, M. Saffman, and A. A. Zozulya, J. Opt. B:
Quantum Semiclassical Opt.6, S318s2004d.

f19g J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov,
Opt. Commun.149, 77 s1998d.

f20g H. Leblond, B. A. Malomed, and D. Mihalache, Phys. Rev. E
sto be publishedd.

f21g A. I. Maimistov, B. A. Malomed, and A. Desyatnikov, Phys.
Lett. A 254, 179 s1999d.

f22g A. Desyatnikov, A. Maimistov, and B. Malomed, Phys. Rev. E
61, 3107s2000d.

f23g F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, J.
Non-Cryst. Solids274, 232 s2001d.

f24g C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L.
Zhao, and Y. Nie, J. Opt. Soc. Am. B19, 369 s2002d.

f25g V. I. Berezhiani, V. Skarka, and N. B. Aleksic, Phys. Rev. E
64, 057601s2001d.

f26g M. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn.
Zaved., Radiofiz.16, 1020s1973d fRadiophys. Quantum Elec-
tron. 16, 783 s1973dg.

f27g M. Ahles, K. Motzek, A. Stepken, F. Kaiser, C. Weilnau, and
C. Denz, J. Opt. Soc. Am. B19, 557 s2002d.

f28g T. J. Alexander, A. A. Sukhorukov, and Yu. S. Kivshar, Phys.
Rev. Lett. 93, 063901s2004d.

f29g M. S. Soskin and M. V. Vasnetsov, inProgress in Optics,
edited by E. WolfsNorth-Holland, Amsterdam, 2001d, Vol. 42,
p. 219.

f30g T. J. Alexander, E. A. Ostrovskaya, Yu. S. Kivshar, and P. S.
Julienne, J. Opt. B: Quantum Semiclassical Opt.4, S33
s2002d.

f31g Q.-H. Park and J. H. Eberly, Phys. Rev. A70, 021602sRd
s2004d.

f32g B. A. Malomed, L.-C. Crasovan, and D. Mihalache, Physica D
161, 187 s2002d.

f33g L. Dong, F. Ye, J. Wang, T. Cai, and Y. P. Li, Physica D194,
219 s2004d.

TWO-DIMENSIONAL SOLITONS WITH HIDDEN AND… PHYSICAL REVIEW E 71, 026615s2005d

026615-9


