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Two-dimensional solitons with hidden and explicit vorticity in bimodal cubic-quintic media

A. S. DesyatnikoV, D. Mihalache®® D. Mazilu?® B. A. Malomed? C. Denz> and F. Lederér
Nonlinear Physics Centre and Centre for Ultra-high bandwidth Devices for Optical Systems (CUDOS), Research School of Physical
Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia

2Departmen’[ of Theoretical Physics, Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania

SInstitute of Solid State Theory and Theoretical Optics, Friedrich-Schiller Universitat Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
4Department of Interdisciplinary Studies, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University,
Tel Aviv 69978, Israel
®Institute of Applied Physics, Westfalische Wilhelms-Universitat Miinster, D-48149 Miinster, Germany
(Received 20 September 2004; published 28 February)2005

We demonstrate that two-dimensional two-component bright solitons of an annular shape, carrying vortici-
ties (m, +£m) in the components, may be stable in media with the cubic-quintic nonlinearity, including the
hidden-vorticity(HV) solitons of the typém,—m), whose net vorticity is zero. Stability regions for the vortices
of both (m, £m) types are identified fom=1, 2, and 3, by dint of the calculation of stability eigenvalues, and
in direct simulations. In addition to the well-known symmetry-breakiexterna) instability, which splits the
ring soliton into a set of fragments flying away in tangential directions, we report two new scenarios of the
development of weak instabilities specific to the HV solitons. One featcinasge flipping with the two
components exchanging angular momentum and periodically reversing the sign of their spins. The composite
soliton does not directly split in this case; therefore, we identify such instability agramsic one. Eventually,
the soliton splits, as weak radiation loss drives it across the border of the ordinary @xoega) instability.

Another scenario proceeds through separation of the vortex cores in the two components, each individual core
moving toward the outer edge of the annular soliton. After expulsion of the cores, there remains a zero-vorticity
breather with persistent internal vibrations.
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I. INTRODUCTION constructed with nonzero spin, including the case when it is

Optical vortex solitons are two- or three-dimensiof2D _noninteger. However, the necklaces are not stationary ob-
or 3D) dark or bright self-trapped light beams with an em-1€CtS, as they spread out and eventually disintegrate. A pos-
bedded phase dislocation, which lends them an angular m@ibility to (practically stabilize necklacelike patterns is to
mentum (“spin”). As topologically nontrivial self-trapped introduce a vectorial interaction with a fundamental soliton,
states, the vortices have attracted a great deal of attentiowhich helps to support vortex-, dipole-, and multipole-mode
which was additionally enhanced by a potential which thestructures in another componelit0]. The stabilization by
2D ones may have as reconfigurable conduits for weak optivectorial interaction allows one to construct stationary
cal signals[1-3]. Vortex solitons of the bright type are of necklace-ring vector solitongl1] with azimuthally modu-
special interest in both respects. In particular, being relalated(necklace-typecomponents, whose densities sum up to
tively compact objects, they make it possible to realize soan azimuthally uniform distribution of the total intensity.
phisticated multivortex configurations. On the other handHowever, multipole and necklace-ring vector solitons are
experimental creation of bright solitons is hampered by thesubject to an azimuthal instability, except for the dipole-
fact that, in media with the simplest collapse-free nonlineari-node vector solitofi12] and vortex-mode soliton close to a
ties (quadratic or saturablethey are subject to strong azi- bifurcation [13]. A particular class of sucligenerally, un-
muthal instability, which splits them into a set of ordinary stablg solutions is a vector vortex soliton with equal ampli-
(zero-spin solitons[4,5]. tude distributions in both componerjts4].

Nevertheless, as was first observed in direct simulations On the contrary to the above-mentioned diverse unstable
of a model with the cubic-quintiéCQ) nonlinearity in Ref. ~ configurations stable two-component vortex solitons in the
[6] and later investigated in detail by more accurate method§€Q model have been identified in Ref5,16. A challeng-
(see a review in Ref[3]), bright vortices with topological ing issue is the possibility of the existence of stable vectorial
chargem=1[6], m=2[3], andm=3[7] may be stable if the solitons of the(m,-m) type, which would feature the same
model features competing self-focusing and self-defocusin@nnular shapéwith a hole in the cente¢ras the bright scalar
nonlinearities. Another example corroborating this conclu-or vectorial vortices with the spins, respectivetypr (m,m),
sion is a model combining quadratic and self-defocusing cubut with zero net spin. The possibility of the existence of
bic nonlinearitied8]. such objects is obvious if the coupling between the compo-

It is relevant to mention that patterns of a similar type, innents is of the cross-phase modulati®#®M) type—i.e., in-
the form of “optical necklaces”—i.e., ring-shaped chains ofsensitive to their relative phase—then, there is no difference
the fundamental solitons—were introduced in the model within the shape between stationary vortex solitons of(thgm)

Kerr (cubic) nonlinearity [9]. The necklaces may also be and (m,-m) types. However, in the simplest collapse-free
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model with saturable nonlinearity, thig, £m) vector vortex 020

~e !
solitons are unstable, although it was demonstrated that th'E 8 =3
. .. . g -100
instability may be partly suppressed for ttre, —m) vortices g 010 m=3 =
[14,17). A stabilizing effect of the incoherent interaction of ; g 20
counterrotating vortices was also demonstrated in an aniso g =
ic photorefractive self-defocusi diljt8 000 i

tropic photorefractive self-defocusing medild8]. 0 300 gl d 600 3000

Compound vortices with the spin componeliis—1,0 (a) Power, P (b) Power, P

and(1, 1, 2 were also studied in the three-wave model of the

type-Il second-harmonic generation, with two components of FIG. 1. The wave numbek (a) and Hamiltonian(b), calculated
the fundamental wave and one second-harmonic componefs per Eq(8), versus total powelP=P;+ P, for the vectorial vortex
[19,20. It was shown that, in this modgler se vortices of  solitons of the(m, £m) types.

both types are unstable—against fusion into an ordinary

zero-spin soliton or splitting, respectively. The addition of a

stabilizing repulsive cubic interaction makes the life expect- ( 2
ancy of the vortices much longer, but no case of complete

stabilization has been fourf@0].

In this work, we demonstrate that, in contrast with thewherer and¢ are the polar coordinates in the plapey), k
previously studied models, th@n,-m) vortex solitons are is a wave number, and the real functidrobeys the equation
rigorously stablein a certain parameter region in the CQ
model. In fact, this result opens up a new class of stable 2D
solitons withhidden vorticity(HV).

We start with a two-component CQ model in a general R
rescaled form, which describes spatial evolution of the lighiwhere D,,=d?/dr?+r~1d/dr—-n?r2. Using the transforma-
beams along the propagation coordinaia a bulk medium  tion V=R(1+a)Y3(1+38)™2 r—r(1+a) (1+38)Y2 and
[21], k—k(1+a)%(1+3B), we cast Eq(3) in the form

10,1 2+ AEq o+ (|Eq J* + | Ep 4| )Eq o~ W|E J* A
_ D5
+ 2B|E4PP|E,* + BIE; 1| )E; =0, (1) kR=DpR+R*~R, (4)

exp(ime) )

exp(xime)

v
E, =V(r)expikz)

KV=D,V+ (1 +a)V3-(1+38)V°, 3

whereE, ,(x,y,z) are the local slowly varying amplitudes of
the two waves and the Laplacianis the diffraction operator r—0. Forr— o, there are two types of solutions to EHd)
acting on the transverse goordlna(gsy). The real param- coexisting in the medium with competing nonlinearities
etersa and § are the cubic and quintic XPM coefficients, [25}—viz., bright solitons withR~exp(—\kr)/\r and dark
respectively. The quintic coefficieny of the self-phase- ¢ o \yith R2(r =oo) = (1+\1-4K) /2, Integral characteris-
modulation(SPM may be normalized to be (ee, e.g., Ref. tics of the bright vectorial soliton are represented by its par-

[22]), which we assume below. tial powers in both components:
The CQ nonlinearity was experimentally observed in iso- al powers ofh components.

tropic media, such as glass&3] and some organic materi-
als [24]. These media also feature nonlinear loss, but the 27 (7 2
consideration of the conservative model is justified, as the P12= mfo rdrRA(r). (5)
characteristic soliton’s length can be made essentially
smaller than the absorption length, or the loss may be com- Global characteristics of the soliton families, in the form
pensated by gain. In that cad®, andE, may be realized as of dependencek(P), where the total power i®=P;+P,,
orthogonally polarized waves, with=2/3 for linear anda  are displayed in Fig. (8 for «=8=1. The cutoff (largest
=2 for circular polarizations. The latter case pertains as welpossible value ofk for the bright-soliton family is the same
to a set of two waves with different carrier wavelengths.as for the family of commonly known 1D solitons in the CQ
Besides that, the modé¢l) may serve as a rough isotropic model, which isk(P=%)=3/16=0.1875; at this value of,
approximation for the description of photorefractive media inthe bright solitons become infinitely broddpproaching a
the low-saturation regime, which is characterized by equafinite maximum amplitudeR .= \f§/2)—i.e., they go over
strengths of the XPM and SPM nonlinearitieéz 8=1 [2].  into dark solitons. We note that the Vakhitov-Kolokolov cri-
Thus, different values ot and g are physically relevant. teriondk/dP>0, which is a necessary condition for the sta-
The estimation of the typical parameters, includingthe transbility of the solitons[26], is satisfied for all these solutions.
verse size and minimal energy for the generation of vortexactually, it guarantees stability against radial perturbations,
solitons, has been recently presented in [RE). but not against symmetry-breaking ones, which are known to
be the source of instability of vortex solitofi3].
Note that the partial angular momenta of the two compo-
nents are not conserved independently, the integral of motion
In this work we focus on the vectorial vortex solitons of being only thetotal angular momentunM =M ;(2) + My(2),
the (m, £m) types with symmetric components: where the partial momenta are defined as

which is supplemented by the boundary conditn ™ at

Il. STATIONARY SOLUTIONS AND STABILITY ANALYSIS
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« 0E1o 0.10 3
Mlz:f Im| E; ,—* |dr (6) (@) @y ||(b) 3 (1,-1)
' = de 3

(recall ¢ is the angular coordinateTwo distinct values of < 005 1
the total angular momenturv) =2mP andM =0, correspond & 1
to two types of solutions(m,m) and (m,—m). Obviously,
both solitons coincide in shape; therefore, the diagrams for , , 4. 1
them shown in Fig. 1 are identical. At the same time, the L i 0.0 00625 0425 D.de7s

stability of the two types of the solutions may be completely

different. An attempt to describe such a difference, based on FIG. 2. Growth rates of perturbation eigenmodes with different

the “thin-ring” approximation, was made in a saturablevalues of the azimuthal index(indicated next to the curvegor the

model[14]. Recent results on the calculation of a maximalvectorial vortex solitons of the typeg , +1).

growth rate of instability in the same modgl7] demon-

strated the difference of two types of solutions and partiato those of their scalar counterparts. However, degeneracy

suppression of instability for counterrotating vorticem,  does not take place for the HV solitons of tira,-m) type,

—-m); however, no stable solitons were found in that case. which clearly shows the difference in the stability problem
A detailed consideration demonstrates that basic stabilitjor the two types of vectorial vortex solitons.

properties of the vectorial solitons are adequately represented Stability eigenvalues were found from numerical solution

by the case ofx=8=1, on which we focus below. In this ©0f Egs.(10). In Fig. 2, we display the dependences of the

case, the Hamiltonian of Eql) is eigenvalues with different values of the azimuthal indeon
the wave numbek for vectorial vortex solitons of thél, 1)
H :J <| VE2+|VE,}- 1|2 + 1I3>dr, ) and(1,-1) types. The maximum growth rate is found for the
2 3 modes with, respectivelg=2 ands=3.

The above results comply with the direct simulations of
the evolution of the vortices shown in Fig. 3 flor 0.1, when
the linear stability analysis predicts that the solitons of both
types are unstable. The symmetry-breaking instability modes
of the (1, 1) soliton in both components are identical; there-
fore, in the Fig. 8) we display only one of them. The ob-
“1 [dR\2 m? , 1 1 served dynamics of two splintesvhich are zero-vorticity
H= wa + ﬁR - §R4+ §R rdr.  (8) vector solitony generated from this solution, is exactly the
same as was observed for the scalar vortex soliton: the splin-
Perturbed vortex-soliton solutions are sought for in theters fly away in tangential directiorid,7].
form [cf. Eq. (2) for the unperturbed ongs

with the total intensityl =|E;|?+|E,|2. The transformation of
variables which leads to the normalized equati¢h
amounts to/(r) =R(r)/ 2, so that =R2. With the latter sub-
stitution, Eq.(7) reduces to the Hamiltonian of a scalar vor-
tex soliton with chargem:

o L\dr

E. = explikz+ ime)[R(DA2 +T+57,

- -
E, =explikz+ imqo)[R(r)/\s‘E +p+7], (9) ° -

where{f,g,p,a}={f(r),g(r), p(r),a(r)}exp(Asz+is¢) with a
complex eigenvalueg and an arbitrary integer azimuthal
index s. Substitution of these expressions into the linearized
equation(1) yields a system

(@)

z=0 z=150 z=130

AIES AR - B - B
-A [ -A -A ks
in © | = ) 91, o
p A A L=t A p (b)
q -A -A -A _[7 |\
where [*=D,,~k+R%3/2-2R?) and A=R(1/2-R?). o .
The = signs in Eg.(10) correspond to the two states — .

(m, £m).

Note that in the case of then,m) solutions, the matrix in
Egs. (10) has a block[2x 2] structure; hence, the eigen-
modes degeneraté=p and g=q) and the linear stability FIG. 3. The instability-induced evolution of the vectorial vortex
problem reduces to one for the scalar vortex sol{tdinRefs.  solitons withk=0.1. (a) One of two identical components of the
[3,7]). Therefore, the stability properties of the (+1,+1) soliton.(b) Two components of thé+1,-1) soliton with
(m, m)-symmetric vectorial vortices amompletely identical implicit vorticity.
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A totally different scenario is observed in Fig(b3,

where, in each component, three splinters of the initial H

soliton start to move in radial directiortsf. similar observa-
tions in Refs.[11,27]). At this stage of the HV soliton’s
breakup, as is seen in the panel corresponding=tb80 in . AT, ]
Fig. 3b), the triangular sets of splinters in the two Compo_Whlch were not visible in Figs. 2 and 4. In Fig. 5 we plot

nents are slightly misaligned. With further propagation, th

separation of the splinters ceases and they eventfizdly
into a spinles<0, 0) vectorial soliton.

Figure 4 displays the instability growth rates found fro

Eq. (10) for higher-order vortex solitons, of them,+m)

types, withm=2 and 3. As seen in these figures, each type of
the soliton has its stability area, as summarized in Table
From these results, we conclude that, for all the solitons wit

explicit vorticity [the (m,m) type], the stability regions ex-

tend up to the cutoff valu&=0.1875, which implies that
these solitons continuously carry over into stable vortices o
the dark-soliton type, similar to what is known in the scalar

case. On the contrary, for the HV solitgribe (m, -m) typel,

the stability intervahever reachethe cutoff value; i.e., dark

vortices of the same type aadways unstableln fact, stabil-
ity intervals for vortex solitons terminating &tsmaller than

the cutoff value(“stability islands’) have never been re-

ported before. In the case of the higher-order solitawmish

PHYSICAL REVIEW E 71, 026615(2005

0.0006

(L-1) (2,-2)

(3.-3)

00000 f-—————-

Rel, ImA

_0'000%40 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2

k k k

FIG. 5. Real(solid lines and imaginary(dashed linesparts of
the instability eigenvalues of the small “internal” instability eigen-
modes for the hidden-vorticity solitons of the tym,-m) with
m=1, 2, and 3, the corresponding azimuthal indices bemgm.

that the azimuthal indes of the most unstable eigenmode
depends on the type of the soliton, and for the higher-order
ones of the type$2,+2) and (3, +3), the most dangerous
value ofs depends ork as well.

IIl. CHARGE FLIPPING

y Performing a numerical analysis of the linear-stability

problem based on Eq10) with higher accuracy, we have
found additional very small unstable eigenvalues for even
azimuthal indicegs=2m), with the growth rate=5x 1074,

gcorresponding ordinary bifurcations of the pitchfork type. In

order to check the numerical accuracy we applied two differ-
ent discretization meshes and found that the numerical val-

m ues of these minuscule eigenvalues coincide within the first

two significant digits when passing from a grid with 300
oints to a grid with 600 points. As a result of these addi-

Itional very weak perturbations, the corresponding rigorously
ﬁiefined stability regions for th@n,-m) HV solitons are con-

siderably reduced with respect to thém,m) counterparts
(see Table | for a summary of the output of the stability
galculations.

To visualize the development of the weak instability re-
vealed by Fig. 5, we simulated the propagation of the soli-
tons of both typesl, +1) with k=0.14, adding random noise
with a relative amplitude of 10%. For the solitons with the
explicit vorticity, the instability growth rate is Re=0.0373,
and the dynamics follows the “usual” break-up scenario
shown in Fig. 8a); therefore, we do not display it again. The
growth rate of the same instability mode wih 2 but for the

m=2 and 3, the(m,-m) HV solitons have a smaller stability

domain than theifm,m) counterparts. It is noteworthy too 1V Soliton of the(1,~1) type is two orders of magnitude

smaller, Re\ = 0.000 36; therefore, noticeable development

TABLE |. Stability intervals and their size relative to the overall of the instability should be expected after having passed the

existence interval &k<<3/16=0.1875 for the vectorial vortex
solitons of sundry types.

distance~10*. Although the so large propagation distances
can hardly be achieved experimentalin the experiment,
these solitons will seem as completely stable gribe issue

(m,n) Unstable Stable %% is of principal interest; therefore, we have completed the nu-
merical analysis and found the soliton’s dynamics of a novel
1LY 0<k<0.14855  0.14855k<0.18750 20.8%  Lind. The results are summarized in Fig. 6, where we show
22 0<k<0.16190  0.1619&'k<0.18750  13.7% the intensity and phase distributions for both components up
3,3 0<k<0.17005 0.17005 k< 0.18750 9.3% to z=175 000.
1,-1 0<k<0.13582  0.16163k<0.17945 9.5% To explain the complex internal dynamics observed in
(2,-2 0<k<0.14884  0.15628 k< 0.15940 1.7% Fig. 6, first we recall the theory developed for necklace-ring
(3,-3 0<k<0.15866 0.15866 k< 0.15973 0.57% vector solitons in REf[ll] The HV solutions that we con-

sider here may be regarded as constituting a special type of
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0.5 :
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FIG. 6. Evolution of the “internally unstable” vortex soliton
with the hidden vorticity, of the(1,-1) type, for k=0.14. The
propagation distance ig=0 (a), 60 000 (b), 120 000 (c), and
175 000(d). The dynamical exchange of the spi8s, [solid lines
in (e)] is accompanied bgharge flipping(sign reversal of the vor-
ticity in each componeitas is clearly visible in the phase diagrams
for arg(E; ,) in (8)—(d). The total spirSkeeps its zero valusee the
dashed line ire)]. The net intensityE, |>+|E,|? keeps its azimuthal
homogeneity in the course of the entire propagation, as shoh in
for z=175 000. Vertical dotted lines correspond to snapstimtand
(c).
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_| costmegg)  sin(mey)

- sin(meg)  cogmey) | 13
where the arbitrary constant anglg reflects the rotational
invariance responsible for the conservation of the total angu-
lar momentum. Note that, for radially symmetric solutions of
Eq. (2), the transformatiorp— ¢, described by Eq(13), is
equivalent to the phase shift accounted for by B@) with
01 2= + Mgq.

The arbitrary phase shift being already absorbed by the
matrix @, the linear transformatiod” in Eq. (11) is given by

efom 1|

where the constant parametgidescribes the rotation in the
space of the componentg;,E,), similar to the Manakov
system, and corresponds to conservation of the “isotopic
spin,” i [{E,E,—E;E,}dr. For any value ofy, the latter ex-
pression is zero in our case. In addition, the parameter
uniquely defines the initial values of the partial spiis
=M,/ P, [recall the partial angular momenta were defined in
Eq. (6)],

cosy isinyg

. , (14)
siny  *i cosy

S =msin2y), $=+8, (15
and, therefore, it determines the total sfiynamical invari-
anh S=M/P=%(S;+S,)=2(m+m)sin(2¢)).

Among possible stationary solutions conforming to Eq.
(11) are those with zero, fraction&@0<S<m), and integer
total spin(S=m). We focus here on two cases which corre-
spond to Eq(2): the (m,m) type of the solutions, with the
total angular momentum attaining its maximum possible
value, M=mP (i.e., S=m), and the HV solutions ofm,
-m) type, with M=S=0. Both of them represent radially
symmetric vector vortices with){=/4; the transformations
Y— =i, m—-m, and (m, £m) — (-m, ¥ m) are all equiva-
lent.

Solutions with explicit vorticityS=m correspond to the

the necklace-ring vectorial solitons, with equal powers inupper sign in Eq(14). The partial spins assume the maxi-
both components?; ,=P/2. In the most general case, thesemum possible values in this cas§, ,=m; thus, the only

solutions may be represented[as Eqg. (2)]

(El) - R(r)eikze)\pq)(C?E(m‘P) ) . (11)
E, sin(me)
Here the matrix

e 0

with arbitrary constant®, ,, indicates the phase invariance

corresponding configuration is the one witfi= /4, and
the vortex soliton of this type always has axially symmetric
(ring-shapegl components. In addition, the exchange of an-
gular momentum between components is forbidden in this
case.

The HV solutions withS=0 are drastically different. They
correspond to the lower sign in E¢l4) for an arbitrary
value of . These include the HV vectorial vortices fagr
=+7/4 and also solutions with intensity distributions in the
two components in the form of tworossed multipolesfor
=0 and$S, ,=0. A similar solution withm=1, or a dipole-
dipole vectorial soliton, was investigated theoretically and
experimentally in Refg.11,27 and found to be azimuthally

of the solutions; this symmetry property is amenable for theunstable in a saturable medium. T#hevalues from the inter-

conservation of the partial powePs ,. The matrix® is sim-
ply a rotational transformation in the transverse plane,

val —w/4<y<ml4 determine thedepth of the azimuthal
modulationin each of the two components, which sum up to

026615-5
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/4 3 3 ; contains any vorticity, as is indeed seen in Figh)6Because
1 L ! § the parametep, is arbitrary, its particular value at this stage
| | [Fig. 7(b)] depends on the initial noise.

L e ] With further propagation, the componersg, almost re-
: ‘ 1 store their initial annular shapes and develop phase disloca-
(a)_m _ . i . \ tions corresponding to new vortex cores, which epposite
2 ; : : to initial ones[cf. Figs. §a) and Gc)]. This phenomenon,
‘ 1 ! “charge flipping,” was recently predicted to occur in a sig-
nificantly different system: namely, vortices in nonlinear
L photonic latticed28]. The latter system does not conserve

‘ , ! the angular momentum at all, because the rotational symme-
® o . : . . try is broken by the lattice. Nevertheless, the similarity with
X105 ‘ : ‘ that system, which seems to be important for the effect to
2 occur, is the presence of two interacting subsystems which
are given the freedom to exchange the angular momentum:
the vortex and the lattice in Ref28] and the two compo-
nents of the vortex soliton in the present case. It is com-
1 ] ! monly known from the studies of vortices in linear optics
(© o 50000 100000 150000 'z [29] that vortices in the phase fronts can annihilate or be
born in pairs. The charge-flipping phenomenon introduces a
FIG. 7. Evolution of the parametegsfrom Eq.(14) in (8 and  new mechanism of such transformation in the nonlinear set-
¢o from Eq. (13) in (b), corresponding to the adiabatic “sliding” ting, through the exchange of the angular momentum be-
across the soliton famlly, defined by E(q.l) in the course of the tween two nonlinearly Coupled Subsystems_
evolution displayed in Fig. 6. Irfc), the angular velocity of the After the first charge flip, the components do not fully
internal rotation is §hown; strong numerical noise on t_his CUNVerestore their annular shag€ig. 6c)], and the maximum
reﬂects the uncertainty of the valye of the pgramai@whlch is value of the partial spins which have the opposite sigs,
e e s oo s ok % ~0.8 wilh~~0 162, i atained 117 00[Fig
those shovn in Figs (B)gandpeliod) P poInts, 7(3)]. At the same time, the dipoles in both components start
' ' to rotate slowly[the angleg, increases; see Fig(h)]. We
the azimuthally uniform distribution of the total intensity ~can introduce, therefore, tengular velocityof the rotation,
=R? [11]. Thus, the continuous soliton family includes dgo/dz as shown in Fig. (€). However small, it demon-
crossed multipoles with different values of the azimuthalstrates an important feature of the correlation between the
modulation depth and opposite fractional values of the parinternal “degrees of freedomp and¢g. Indeed, for the exact
tial spins. It is important to note that, because all the dynamistationary solutions, these two parameters are independent,
cal invariants do not depend afy for the whole branch of while for the perturbed solutions in Figs. 6 and 7, they be-
HV vectorial solitons parametrized by, dynamical ex- come coupled through the growing instability modes. In par-
change of angular momentum between components is posicular, points where the angular velocity vanishes corre-
sible. spond to a dipole-dipole soliton with zero vorticity in both
Using the decomposition in E¢L1), we can now explain components, while the fastest rotation is achieved when the
the dynamics in Fig. 6 in terms of a slow evolution of the partial spins in the components attain maximum absolute
parametersp, and ¢, as shown in Fig. 7. In other words, values.
instead of modulational instability along the azimuthal direc- We continued the simulations and eventually observed a
tion, which would lead to fragmentation of the initial annular breakup of the vortex soliton, as shown in Fig. 8. It occurs
soliton, the instability modes from Fig. 5 initiate slow sliding within the distance of several hundreds of propagation
of the solution across the continuous manifold with the inde-units—i.e., three orders of magnitude smaller than the previ-
pendent parametets, and . At each stage of the evolution, ous stable propagation; thus, it may be regarded as an “ex-
such as those corresponding to franf@s<(d) in Fig. 6, we  plosion.” We have checked the evolution of the integrals of
observe a slightly perturbed stationary solution with varyingmotions at this stage and, in particular, observed perfect con-
¢o and ¢ (the arbitrary phase#, , are of no importance servation of the total spin, Fig.(®, which rules out a nu-
because the XPM interaction between the components isierical error as a probable cause of the “explosion.”
phase insensitive In Fig. 9 we show the total integral power and Hamil-
Indeed, the random noise at the level of 10% of the solitonian, calculated in the course of the propagation, and no-
ton’s amplitude, added to the HV soliton in Figah quickly  tice small changes which naturally occur due to the radiation
dissipates, and in the course of the first several thousandsmnission from the perturbed soliton. The breakup of the soli-
units, the vector HV soliton propagates without any notice-ton is accompanied by a strong emission of radiation which
able change. Then, as is seen in Fi(p),/the parametery  leads to sharp changes in the final segment of the diagrams.
decreases and the components assume a shape of two crossisihg the relations displayed in Fig. 1, we restore the corre-
dipoles. When the modulation depth reaches its maximunsponding value of the propagation constiarand plot it in
for =0, the solution is, simply,{E;,E;}=R(r){cod¢  Fig. Ac). As one can see, the propagation constant decreases,
- o), Sin(e—¢p)}; hence, at this pointpeither component parallel to the power loss due to the radiation. The explosion
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cause it hits a boundary of the “external” instability domain,
after which it breaks apart. The latter boundary is found from
the linear-stability analysis to be lat0.135 82(see Table)l,

and we stress the remarkable agreement and accuracy of the
numerical procedure: both values coincide up to°4d.e.,
k~0.136.

Closer to the linear-stability domain—for instance, for
=0.16—the HV soliton of the typél,-1) demonstrates no
sign of instability for any reasonable propagation distance
despite the addition of initial noise, because the correspond-
ing instability mode withs=2 in Fig. 3 has a vanishingly
small growth rate. We mark the vanishing “internal” instabil-
ity by excluding the corresponding domain from the final
summary in Table I.

We conjecture that the internal dynamics of the vectorial
soliton and charge flipping reported above for the particular
CQ model and the particular case w=1 may manifest
itself for higher topological charges as well as in other
systems—for example, in the mixture of Bose-Einstein con-
densate$BEC’s) [30]. In the latter system, the overall stabi-
lization of vortices is provided by the external trap, rather
than the quintic nonlinearity. The necklace-ring-type solu-
tions in two-component BEC's, or nontopological vortices,
were recently described in R¢B1]. It is interesting to note
that the internal dynamics of vector vortices, which keeps the
overall density profile intact similar to Fig. 6, can be initiated
in a BEC mixture by the adiabatic or abrupt changes of the
external coupling drive; however, no charge-flipping effect

FIG. 8. The final stage of the soliton’s evolution, featuring the Was observed in Ref31].
“explosion,” after the quasistable evolution in Fig. 6. The propaga-
tion distance iz=179 500 in(a), 179 600 in(b), and 179 700 ir{c).

occurs when the propagation constant reaches the \alue
~0.136 27, and the splitting in Fig. 8 follows the scenario

IV. INSTABILITY OF THE VORTEX CORE CLOSE TO
CUTOFF

As was already stressed, Figs. 2 and 4 emonstrate that, in

already observed in Fig. 3—three splinters fly away alongcontrast to the stability domain for the solitons of tine, m)
radial directions. We conclude that the sudden splitting of theype, the stability region for the HV solitons of tiie, —m)
otherwise “intrinsically” unstable HV soliton happens be- type does not extend to the cutoff point. In this section, we

140

Power, P (@)
130 \

9

Hamiltonian, H

(b)

0.1400 -

0.1375 A

wave number, &

0.13627

(c)

0.1350
0

FIG. 9. Evolution of the total integral powes), Hamiltonian
(b), and accordingly defined propagation const@ntin the course
of the propagation shown in Figs. 6 and 8.

50000

100000

150000

z

aim to study the instability of the HV solitons close to this
point. The simulations demonstrate that the corresponding
instability mode with the azimuthal indeg=1 leads to a
shift of the vortex core. A possibility of this specific instabil-
ity was earlier studied in Ref.32] for vortices in scalar
models, using an analytical approximation for very broad
annular solitons. It was concluded that such an instability
may occur, but no particular linear-instability mode corre-
sponding to the core shift was fourds before, the scalar
case is exactly tantamount to the symmetric vectorial vorti-
ces of(m,m) type considered heteln contrast to that, Fig.
10 shows an explicit example of such an instability mode for
the HV solitons of theg1,-1) type.

Numerical development of this instability is displayed for
k=0.18 in Fig. 11. Adding initial random noise with a 20%
relative amplitudgFig. 11(a)] does not strongly affect the
dynamics—for up to 4000 propagation units, it shows no
sign of instability. The only visible action of the perturbation
is excitation of internal modes of the vectorial soliton, cor-
responding to purely imaginary eigenvalues in the linear-
perturbation spectrurhsuch eigenvalues are shown in Fig.
10(a)]. The pattern displayed in Fig. () periodically re-
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FIG. 10. (a) Real(solid lineg and imaginarydashed linesparts
of the instability eigenvalues with the maximum growth rate for the
vectorial solitons of thél, +1) types.(b) An additional bifurcation
(magnified in the inset Aof the perturbation mode wits=1, which
occurs for the hidden-vorticity soliton of tHe-1,-1) type close to ©
the cutoff.

peats itself during the propagation. Similar long-lived inter-

nal modes have been recently observed in perturbed evoll
tion of scalar CQ vortex solitong33]. It is noteworthy too

that, for the symmetric vectorial vortex soliton shown in Fig.

11, the total intensity shows no sign of a growing azimuthal(d)
modulation, as the intensity of the components sum up to th 1.0
axially uniform distribution, similar to the case of “intrinsic” 1
instability shown in Fig. 6. 0.0

At the distance 0fz=4300, the growth of the unstable .
mode results in separation of the dislocations in the twc -1.0

componentgsee Fig. 1lc)]. The distribution of the total © o 1500 3000 4500 2
intensity remains unmodulated, and the vortex core is invis-
ible, because it is covered, in the total-intensity dlStrIbutIOh,_l) type with k=0.18 and initial 20% random-noise perturbation.
_by the_ mutua_l dlsplgcement of the components. actually, _aFf’he propagation distance 750 in (a), 500 in(b), 4300 in(c), and
'ntens_'ty maximum In oné F:omponent lies on top O,f a m,'n"SOOO in(d). In this figure, in contrast to previous ones, the intensity
mum in the other. The shift of the vortex core quickly in- is gcaled from blackzerd to white (maximum. As before, the
creases, and it moves to the outer edge of the soliton. As fame (e) demonstrates the evolution of the partial spisslid
whole, the vectorial soliton remains localized, as is seen iffines) in the two components and conservation of the total angular
Fig. 11(d), and it possesses no vorticity, as the spin diagramgomentum(the dashed line
in Fig. 11(e) demonstrate. Strong modulation of the compo-
nents inside the soliton persists for a long propagation dis-
tance after the vortex annihilation. We Con.Clude .that, n thl%jark-so”ton Vorticegcutoff)_ For the |mp||c|t_vort|c|ty solu-
establishment of a breather—i.e., a strongly perturbed anghenify the region of the relatively strong “external” insta-
oscillating zero-spin soliton. bility (shown in Table ), where unstable vectorial solitons
with both implicit and explicit vorticity split into a set of
V. CONCLUSION fragments, the number of which is equal to the azimuthal

We have demonstrated that 2D spatial solitons of annulaf’dex of the fastest growing mode of small perturbations. For
shape carrying zero total vorticity may be stable in the cQarger k and only for the hidden-vorticity solitons of the
medium, being supported by the hiddémplicit) vorticity, (m,—m) type, there exists a domain of very weak “intrinsic”
in quite a broad region. The output of the linear-stability instability, where the vectorial soliton as a whole remains
analysis is summarized in Table |, where the stability domairfobust, while its components undergo a very slow internal
and its size relative to the existence domain are shown. Themvolution, “sliding” through the solution family and exhibit-
is a single border between instability and stability regions foring exchange of the angular momentum and charge flipping.
the explicit-vorticity solitons of thém,m) type and the sta- In a vicinity of the cutoff, where the explicit vortices are
bility domain extends up to the point of the transition to stable, the hidden-vorticity solitons reveal a weak-instability

FIG. 11. Dynamics of the hidden-vorticity soliton of tH&,
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